

Sean Ryan

LASP Mission Operations 10/15/09

LASP Operations Heritage

- The Laboratory for Atmospheric and Space Physics (LASP) is a research institute at the University of Colorado, Boulder
- LASP specializes in the design, build, test and operations of instruments
- Three decades of flight operations

SME (1981-1989)

SORCE (2003 - present)

STRV-1A & STRV-1B (1996 - 1998)

ICESat (2003 - present)

SNOE (1998 - 2004)

AIM (2007 - present)

QuikSCAT (1999 - present)

Kepler (2009 - present)

Operations Architectures

- Operations team can be successful in both architectures
- Architecture A
 - Increased programmatic costs due to "satellite vendor in the loop"
 - Satellite vendor tends to be more active in the flight operations, this may reduce risk
- Architecture B
 - Plan needed to keep the vendor in the loop

Remote monitoring capabilities

- Satellite vendor needs the ability to view real-time telemetry
 - Critical to support anomaly resolution and recovery
 - Allows the anomaly investigation team at the vendor to remain co-located with their support team
 - Allows the anomaly investigation team to be co-located with their analysis tools
 - Efficient use of the resources

Data integrity check

- You can not have enough data integrity checks
 - Frame level
 - CRC, Turbo-code, Reed-Solomon
 - Packet level
 - CRC
 - Build packets as early as possible and include the integrity check
- Validate the contents of the data recorders
 - Compare the data delivered in real-time to the same data delivered via the real-time downlink
- Deliver all data integrity bits to the operations center
- Last commanded value vs actual value vs initial condition

Include subject matter experts

- During anomaly investigations is is highly desirable to be able to talk directly to the component manufacturer
 - They are the experts
 - This requires regular maintenance of contact information
- Their detailed knowledge of the system, and issues on other programs is invaluable
- Having detailed anomaly reports from other programs are extremely helpful
 - Even if you do not know who program X, Y or Z is
 - Subcontractors often do not have on-orbit performance data from programs available to them, operations teams must provide this information back to them
- This interaction tends to slow the process down
 - That is generally not a bad thing
- Review the satellite operations concept with the component manufacturer

Operations team training

- Two operations concepts
 - The operations team is responsible for the day to day state-of-health monitoring with a satellite vendor providing sustaining engineering support
 - The operations team takes ownership of the vehicle on orbit and is entirely responsible for mission success
- Training needs to be geared toward the operations concept selected by the mission
 - The team taking ownership will need significantly more training
- Guidelines for long term performance monitoring needs to be included

Redundancy

- Consider selective redundancy
 - Satellites tend to come in 2 flavors, single or dual string
 - Single string vehicles only have 3 reaction wheels
 - An additional 4th wheel provides redundancy for minimal costs
 - Spare battery cells vs redundant battery vs over-sized battery
 - A redundant battery is often cost/mass prohibitive
 - If the loss of capacity is caused by the on orbit environment, then the oversized battery may not be able to compensate – All cells equally damaged.
 - When the spare cell is "switched in" it will be mis-matched with the other cells
- We can fix it in software
 - The impact of on-orbit failures can often be mitigated by onorbit software changes – Make sure you can get the software commands loaded
- Minimize the use of block redundancy
 - The larger the change, the less likely it is to happen

Risk vs performance

- The operations team will often continue to use a component with a partial failure because the program does not want to assume the risk/ downtime of switching to a back-up unit
 - The program will accept the reduced performance as long as requirements are met
 - The program may go to great lengths to develop an operational work-around
- Provide the ability to power up redundant units, and use one while checking out the other

Performance monitoring

- Performance monitoring is more than looking at limit violations
- Often times a degradation in performance can be seen long before a limit violation is reached
 - This allows the operations team to be proactive in preventing unexpected science loss
 - Reduces the stress on the operations team and leads to better decision making
 - Component failures on other missions may identify the need for additional
- Clearly identify on-board fault detection limits, and develop ground capabilities to monitor performance vs these limits